448 research outputs found

    Large-scale mass distribution in the Illustris simulation

    Get PDF
    Observations at low redshifts thus far fail to account for all of the baryons expected in the Universe according to cosmological constraints. A large fraction of the baryons presumably resides in a thin and warm-hot medium between the galaxies, where they are difficult to observe due to their low densities and high temperatures. Cosmological simulations of structure formation can be used to verify this picture and provide quantitative predictions for the distribution of mass in different large-scale structure components. Here we study the distribution of baryons and dark matter at different epochs using data from the Illustris simulation. We identify regions of different dark matter density with the primary constituents of large-scale structure, allowing us to measure mass and volume of haloes, filaments and voids. At redshift zero, we find that 49 % of the dark matter and 23 % of the baryons are within haloes more massive than the resolution limit of 2×1082\times 10^8 M_\odot. The filaments of the cosmic web host a further 45 % of the dark matter and 46 % of the baryons. The remaining 31 % of the baryons reside in voids. The majority of these baryons have been transported there through active galactic nuclei feedback. We note that the feedback model of Illustris is too strong for heavy haloes, therefore it is likely that we are overestimating this amount. Categorizing the baryons according to their density and temperature, we find that 17.8 % of them are in a condensed state, 21.6 % are present as cold, diffuse gas, and 53.9 % are found in the state of a warm-hot intergalactic medium.Comment: 12 pages, 15 figure

    Rings and Chains: Synthesis and Characterization of Polyferrocenylmethylene

    Get PDF
    The synthesis and characterization of polyferrocenylmethylene (PFM) starting from dilithium 2,2-bis(cyclopentadienide)propane and a Me2C[1]magnesocenophane is reported. Molecular weights of up to Mw = 11 700 g mol–1 featuring a dispersity, Ð, of 1.40 can be achieved. The material is studied by different methods comprising nuclear magnetic resonance (NMR) spectroscopy, matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectrometry, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) measurements elucidating the molecular structure and thermal properties of these novel polymers. Moreover, cyclic voltammetry (CV) reveals quasi-reversible oxidation and reduction behavior and communication between the iron centers. Also, the crystal structure of a related cyclic hexamer is presented

    Lesetest für Berufsschüler/innen LTB-3. Handbuch

    Get PDF
    Klassenarbeiten, Klausuren und Fachprüfungen dauern oft mehrere Stunden,sowohl in ihrer Dauer wie in ihrer Auswertung. Die Dauer der Prüfungen ist in Prüfungsordnungen vorgegeben. Der vorliegende Test ermöglicht es, auf ökonomische und objektive Weise die Lesekompetenz von Schülerinnen und Schülern zu erfassen. Er ist einfach handzuhaben, Testdurchführung und -auswertung nehmen nur wenig Zeit in Anspruch und ermöglichen eine problemlose Integration in den Schulalltag. Ein Test kann nicht von einer Person entwickelt werden und so stehen als Autoren und Berater mehrere Personen auf der Titelseite. Neben den genannten Mitwirkenden waren noch unzählige Personen beteiligt, die hier und da konstruktiv an einer Frage „herumkritisierten“

    Controlling the crystal structure of precisely spaced polyethylene-like polyphosphoesters

    Get PDF
    Understanding polymer crystallization is important for polyethylene-like materials. A small fraction of monomers with functional groups within the polyethylene chain can act as crystallization “defects”. Such defects can be used to control the crystallization behavior in bulk and to generate functional anisotropic polymer crystals if crystallized from a dilute solution. Due to their geometry, phosphate groups cannot be incorporated in the polyethylene lamellae and thus control chain folding and crystal morphology. Herein, the synthesis and crystallization behavior for three different long-chain polyphosphates with a precise spacing of 20, 30, and 40 CH2-groups between each phosphate group are reported. Monomers were prepared by esterification of ethyl dichlorophosphate with respective tailor-made unsaturated alcohols. Acyclic diene metathesis (ADMET) polymerization and subsequent hydrogenation were used to receive polyethylene-like polyphosphoesters with molecular weights up 23 100 g mol−1. Polymer crystallization was studied from the melt and dilute solution. Samples were characterized by differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). A change in crystal structure from pseudo-hexagonal to orthorhombic was observed from the “C20” to the “C40” polymer. Melting points and lamellar thicknesses increased with the length of the aliphatic spacer from 51 °C (“C20”) to 62 °C (“C30”) and 91 °C (“C40”). Values for the long periods in bulk (3.1 nm for C20, 4.8 nm for C30, and 7.2 nm for C40) obtained by SAXS and TEM are in qualitative agreement. The thickness of the crystalline part obtained by AFM and TEM increased from about 1.0 nm (C20) to 2.0 nm (C30) to 2.9 nm (C40). Our systematic library of long-chain polyphosphates will allow designing anisotropic polymer colloids by crystallization from solution as functional and versatile colloid platform

    High-Altitude Cognitive Impairment Is Prevented by Enriched Environment Including Exercise via VEGF Signaling

    Get PDF
    Exposure to hypobaric hypoxia at high altitude (above 2500 m asl) causes cognitive impairment, mostly attributed to changes in brain perfusion and consequently neuronal death. Enriched environment and voluntary exercise has been shown to improve cognitive function, to enhance brain microvasculature and neurogenesis, and to be neuroprotective. Here we show that high-altitude exposure (3540 m asl) of Long Evans rats during early adulthood (P48-P59) increases brain microvasculature and neurogenesis but impairs spatial and visual memory along with an increase in neuronal apoptosis. We tested whether enriched environment including a running wheel for voluntary exercise (EE) can prevent cognitive impairment at high-altitude and whether apoptosis is prevented. We found that EE retained spatial and visual memory at high altitude, and prevented neuronal apoptosis. Further, we tested whether vascular endothelial growth factor (VEGF) signaling is required for the EE-mediated recovery of spatial and visual memory and the reduction in apoptosis. Pharmacological inhibition of VEGF signaling by oral application of a tyrosine kinase inhibitor (Vandetanib) prevented the recovery of spatial and visual memory in animals housed in EE, along with an increase in apoptosis and a reduction in neurogenesis. Surprisingly, inhibition of VEGF signaling also caused impairment in spatial memory in EE-housed animals reared at low altitude, affecting mainly dentate gyrus microvasculature but not neurogenesis. We conclude that EE-mediated VEGF signaling is neuroprotective and essential for the maintenance of cognition and neurogenesis during high-altitude exposure, and for the maintenance of spatial memory at low altitude. Finally, our data also underlines the potential risk of cognitive impairment and disturbed high altitude adaption from the use of VEGF-signaling inhibitors for therapeutic purposes.This research was supported by the Swiss National Science Foundation [Marie Heim-Vogtlin (MHV) - SNF grant PMPDP3_145480], the Institute of Veterinary Physiology and the Institute of Pharmacology and Toxicology at the University of Zurich, the Institute of Anatomy at the University of Freiburg, and the Institute of Neuroscience at the University of Basque, Spain

    Controlling Domain-Wall Nucleation in Ta/CoFeB/MgO Nanomagnets via Local Ga+ Ion Irradiation

    Get PDF
    Comprehensive control of the domain wall nucleation process is crucial for spin-based emerging technologies ranging from random-access and storage-class memories over domain-wall logic concepts to nanomagnetic logic. In this work, focused Ga+ ion-irradiation is investigated as an effective means to control domain-wall nucleation in Ta/CoFeB/MgO nanostructures. We show that analogously to He+ irradiation, it is not only possible to reduce the perpendicular magnetic anisotropy but also to increase it significantly, enabling new, bidirectional manipulation schemes. First, the irradiation effects are assessed on film level, sketching an overview of the dose-dependent changes in the magnetic energy landscape. Subsequent time-domain nucleation characteristics of irradiated nanostructures reveal substantial increases in the anisotropy fields but surprisingly small effects on the measured energy barriers, indicating shrinking nucleation volumes. Spatial control of the domain wall nucleation point is achieved by employing focused irradiation of pre-irradiated magnets, with the diameter of the introduced circular defect controlling the coercivity. Special attention is given to the nucleation mechanisms, changing from a Stoner-Wohlfarth particle's coherent rotation to depinning from an anisotropy gradient. Dynamic micromagnetic simulations and related measurements are used in addition to model and analyze this depinning-dominated magnetization reversal

    Transcriptome analysis of human cancer reveals a functional role of Heme Oxygenase-1 in tumor cell adhesion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heme Oxygenase-1 (HO-1) is expressed in many cancers and promotes growth and survival of neoplastic cells. Recently, HO-1 has been implicated in tumor cell invasion and metastasis. However, the molecular mechanisms underlying these biologic effects of HO-1 remain largely unknown. To identify a common mechanism of action of HO-1 in cancer, we determined the global effect of HO-1 on the transcriptome of multiple tumor entities and identified a universal HO-1-associated gene expression signature.</p> <p>Results</p> <p>Genome-wide expression profiling of Heme Oxygenase-1 expressing versus HO-1 silenced BeWo choriocarcinoma cells as well as a comparative meta-profiling of the preexisting expression database of 190 human tumors of 14 independent cancer types led to the identification of 14 genes, the expression of which correlated strongly and universally with that of HO-1 (P = 0.00002). These genes included regulators of cell plasticity and extracellular matrix (ECM) remodeling (MMP2, ADAM8, TGFB1, BGN, COL21A1, PXDN), signaling (CRIP2, MICB), amino acid transport and glycosylation (SLC7A1 and ST3GAL2), estrogen and phospholipid biosynthesis (AGPAT2 and HSD17B1), protein stabilization (IFI30), and phosphorylation (ALPPL2). We selected PXDN, an adhesion molecule involved in ECM formation, for further analysis and functional characterization. Immunofluorescence and Western blotting confirmed the positive correlation of expression of PXDN and HO-1 in BeWo cancer cells as well as co-localization of these two proteins in invasive extravillous trophoblast cells. Modulation of HO-1 expression in both loss-of and gain-of function cell models (BeWo and 607B melanoma cells, respectively) demonstrated a direct relationship of HO-1 expression with cell adhesion to Fibronectin and Laminin coated wells. The adhesion-promoting effects of HO-1 were dependent on PXDN expression, as loss of PXDN in HO-1 expressing BeWo and 607B cells led to reduced cell attachment to Laminin and Fibronectin coated wells.</p> <p>Conclusions</p> <p>Collectively, our results show that HO-1 expression determines a distinct 'molecular signature' in cancer cells, which is enriched in genes associated with tumorigenesis. The protein network downstream of HO-1 modulates adhesion, signaling, transport, and other critical cellular functions of neoplastic cells and thus promotes tumor cell growth and dissemination.</p

    Herausforderungen und Zukunftsperspektiven eines Sachunterrichts mit und über Medien

    Full text link
    Die Autor*innen zeigen aktuelle und zukünftige Herausforderungen, die sich durch die Einflüsse der Digitalisierung auf die Lebens- und Lernwelt von Kindern ergeben, auf. Dabei stellen sie nicht nur fest, dass eine durch die Digitalität veränderte Lebenswelt sowohl einen innovativen Unterricht als auch eine veränderte Ausbildung für diesen erfordert. Sie unterstreichen auch die Notwendigkeit, das Lernen in einer und über eine Kultur der Digitalität als Aufgabe des Sachunterrichts weiter auszuarbeiten sowie durch entsprechende Ziele, Inhalte und (mediale) Zugänge zu konkretisieren. (DIPF/Orig.)A world of life transformed by digitality demands a changed teaching and a changed education for this innovative teaching. This thesis, which is on the one hand insightful, but on the other hand also fraught with consequences, poses challenges both to the teaching of subject matter with all its actors and to didactics and research in this field. The following article focuses on these challenges and is directed towards future perspectives of learning with and about media in schools, teacher training and research. (DIPF/Orig.
    corecore